차원 축소와 특성 선택: PCA, LDA, 특성 중요도 분석
머신러닝에서 차원의 저주라는 개념은 아마 대부분의 분석가들에게 익숙할 것입니다. 데이터의 차원이 증가함에 따라, 모델의 성능을 향상시키기 위해 필요한 데이터의 양이 기하급수적으로 증가합니다. 이러한 문제를 해결하기 위한 방법 중 하나가 차원 축소와 특성 선택입니다. 이번 글에서는 주요 차원 축소 기법인 PCA와 LDA, 그리고 특성 중요도 분석에 대해 알아보겠습니다. 1. 차원 축소의 필요성 1-1. 차원의 저주 데이터의 차원이 증가할수록 그 데이터를 표현하기 위해 필요한 공간은 기하급수적으로 증가합니다. 이로 인해 모델은 과적합될 위험이 높아지고, 학습 시간이 길어질 수 있습니다. 또한, 고차원 데이터는 시각화하기 어렵기 때문에 데이터를 이해하거나 통찰을 얻기 어렵습니다. 1-2. 차원 축소의 목적 차..
프로그래밍과 개발
2023. 6. 21. 19:53
최근에 올라온 글
글 보관함